

Third Semester MCA Degree Examination, June/July 2015 Operating Systems

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. List the essential properties of the following types of systems:
 - Real time system
 - ii) Hand held system
 - iii) Distributed system
 - iv) Clustered system

(12 Marks)

b. List and explain operating system services.

(08 Marks)

- 2 a. With the help of a state transition diagram, explain various states of a process.
 - b. Distinguish different types of schedulers.

(06 Marks) (06 Marks)

c. Consider the following set of processes with the length of the CPU given in milliseconds:

Process	Burst time	Priority
P_{I}	10	3
P_2	1	1
P_3	2	3
P ₄	1	4
P_5	5	2

- i) Draw four Gantt chart using the following scheduling algorithms:
 - i) FCFS
- ii) SJF
- iii) Priority
- iv) RR (quantum = 1).
- ii) Find waiting time and turnaround time of each process.
- iii) Which of the algorithms results in the minimum average waiting time?
- (08 Marks)
- 3 a. What is a thread? Explain the concept of multithreading and their various models. (10 Marks)
 - b. What is a semaphore? Define wait and signal operations.

(06 Marks)

c. Explain multilevel feedback scheduling algorithm.

(04 Marks)

D 0

- 4 a. What is a deadlock? What are the four conditions that cause dead lock? Explain. (10 Marks)
 - b. Consider the following snapshot of a system:

	Allocation					Max					Available				
	Α	В	C	D			Α	В	C	D	A	В	C	Ι	
P_0	0	0	1	2			0	0	1	2	1	5	2	(
\mathbf{P}_1	1	0	0	0			1	7	5	0					
P_2	1	3	5	4			2	3	5	6					
P_3	0	6	3	2			0	6	5	2					
P_4	0	0	1	4			0	6	5	6					
					_	_	_	_	_						

Answer the following questions using banker's algorithm:

- i) What is the content of the matrix need?
- ii) Is the system in a safe state?
- iii) If a request from process P₁ arrives for (0 4 2 0), can the request be granted immediately? (10 Marks)

- 5 a. Describe both the internal and external fragmentation problems encountered in continuous memory allocation scheme. (10 Marks)
 - b. Explain segmentation method of memory allocation.

(10 Marks)

6 a. Discuss demand paged allocation scheme.

(10 Marks)

- b. Consider the following page reference string:
 - 2 3 2 1 5 2 4 5 3 2 5 2

How many page faults occur for the following replacement algorithms, assuming three frames?: i) FIFO ii) LRU iii) Optimal. (10 Marks)

- 7 a. What is a file? List and explain different file attributes and various operations on a file that could be performed. (08 Marks)
 - b. Differentiate:
 - i) Sequential and direct access method
 - ii) Single level and two level directory structures.

(06 Marks)

c. Explain any two disk scheduling algorithms.

(06 Marks)

8 a. What is access matrix? How is access matrix implemented?

(10 Marks) (10 Marks)

b. Explain 3 main components of a Linux system with a neat diagram.
